
Machine Learning:
Community Tools

Dan Guest (HU, Berlin)
Snowmass Computational Fronteers Workshop

https://indico.fnal.gov/event/43829/contributions/192876/

1

https://indico.fnal.gov/event/43829/contributions/192876/

Disclaimer
● I’m on ATLAS, I’ve been on ATLAS since I wrote my first line of C++

○ Everything here has a huge bias as a result

● I’ll talk mostly about neural networks: boosting follows a similar workflow
○ It’s still very popular, just not as much development recently

● I’m not an expert in anything I’m about to present
○ I’m a physics postdoc: I mostly think about what physics I’ll accomplish in the next 5 years

2

The Machine Learning Workflow
Production Training

Large
Dataset

Results

Reconstruction
(C++, x86 at LHC)

Conversion
Training data

Training Framework
(GPU, PowerPC, Whatever…)

Trained
ModelConversion

Inference
Framework

Database
(old news)

3

The Non Machine Learning Workflow
Production Optimization

Large
Dataset

Results

Reconstruction

Conversion
Flat data

Lots of Studies

Better
algorithm

Some
Hacking

4

Step 1: restructure primary data
● Traditional hep code: process

one object at a time
● ML is driven by parallelism

○ E.g. GPUs

● Our data isn’t formatted
ideally for SIMD instructions

○ Want arrays not trees

● Numpy is a more natural fit
○ For now we’re all python

1 2 3

4 5 6 7

electron
candidats

jets

Event 1

8

9 10 11

Event 2

jets

SIMD version
1 2 3

54

6 7 8
109

5

electron
candidats

Making Datasets
● Funtime Activity: Find Your Way To Numpy
● Note: oversimplified setup

○ Many pipelines are more complicated

Primary
Data

HDF5 / Zarr / etc

ROOT
ntuple

Numpy

Main changes in the last few years:
● More uproot
● More non-ROOT formats
● People are better at numpy 6

Can we make this simpler?
● Maybe... but it’s not the obvious place to start
● In practice: Event Data Model (EDM) → training is several steps

Mini-EDMIdeal:

Mini-EDM

(or something)

reality:

quasi-EDM

(or something)

7

But I want to make it better anyway!
● Great! How should we do this?
● LHC: “We have an Exabyte of ROOT data, we should use ROOT!”

○ Problem: our primary data is nothing like our training datasets
○ Also ROOT format := whatever is in a ROOT file, not a real standard

● ROOT: “we should invent a new data format!” (RNtuple)
○ Widespread use will require factorization and standardization

● Armchair Data Nerds (i.e. me): “Hasn’t someone already solved this problem?”
○ Parquet is another promising candidate
○ Many open source projects are receiving little to no funding!

● My opinion: we need more core developers for experiments
● Anyway, once we have some training data...

8

https://github.com/apache/parquet-format

A few choices: Training “Flowchart”

pip or
virtual
environment

LCG
Views

Grid
GPUs

9

How to improve? Focus on distribution
pip /
venv

conda LCG
Views

Containers
(Docker,
podman,
singularity)

User configurable Y Y X Y

Work on laptop Y Y :’(Y

Work on desktop Y Y Y Y

Works on cluster :(:(Y Y (need work)

Works on grid :(:(Y Y (need work)

Composable Y Y :(X

● LCG views: lazy load an OS
from a FUSE mount

○ Requires network!
● Containers: eager-load an OS

from an image
● Containers could be synched /

distributed more intelligently
○ Examples exist
○ Consider podman?
○ Or native docker?

● I assume root access to a
desktop, normal user privileges
for a cluster

● Containers can be user-defined, but we could centralize support (e.g. base layers) 10

https://gitlab.cern.ch/unpacked/sync

How do we apply models?
Training Database Inference

Symmetric

lwtnn
Factorized

11

But isn’t symmetric easier?
Advantages of symmetric:

● Only one library
● Cutting edge support

○ No need for standards

● Less validation required
● No need to understand format(s)

Problems with symmetric:

● Framework bloat
○ CMSSW has ~4 NN libraries
○ Dependency hell [1]

● C++ binding support

● Eventually, symmetric implementations tend to become factorized
○ E.g. Tensorflow in CMSSW

● But factorization will require model translation
12

https://discuss.pytorch.org/t/torchscript-compatibility-between-pytorch-versions/87655/2

Will save the day?

● Pro: there’s a well defined specification, with many community contributors
○ Brought to you (in part) by Microsoft. What a time to be alive!

● Con: common standards always lag, big players have their own inference frameworks 13

https://github.com/onnx/onnx/blob/master/docs/IR.md

Or will industry push lock-in?

VS = VS
?

● Current trend is toward a duopoly: Will ML go the way of instant messaging?*
○ Can we help?

*there still might be hope
14

https://en.wikipedia.org/wiki/Matrix_(protocol)

In short:
It’s (mostly) chaos!
(i.e. like the rest of academic code)

15

Maybe chaos (autonomy) isn’t so bad
● We work in small teams

○ One reality of our funding structure

● Every application is different
● Commonality within experiments:

○ Branding
○ Raw ingredients
○ Internal quality review

● Think of it as a franchise

Wikipedia: “...a franchisor licenses its know-how, procedures,
intellectual property, use of its business model, brand... In return
the franchisee pays certain fees and agrees to comply with
certain obligations, typically set out in a Franchise Agreement.”

16

https://en.wikipedia.org/wiki/Franchising
https://en.wikipedia.org/wiki/Business_model

Summary: What can we do to help?
● Keep a balanced menu

○ Best practices can evolve, especially in ML
○ Avoid monoculture

● Know what you eat
○ Experiments can’t avoid having ML engineers

■ Especially with more integrated ML
○ Common standards help here

● Pay your workers (anything)
○ Open source software doesn’t pay (much)
○ But we rely on it heavily
○ Even citing your libraries helps (and it’s free)

17

Thank You!
Enjoy your

physics!
(don’t ask me what’s in it, it’s complicated)

18

No, Really... it’s
over now. (backup after this)

19

So what’s new in the ML workflow?
● At a high level: very little
● Making derived datasets → 50% of every PhD

○ Training datasets aren’t very big: size < 1 TB

● Running stand-alone optimizations → 25% of many PhDs
● Calibration data:

○ We’ve done this forever
○ In many cases we’re overtooled here

● At a low level: lots of things are new to physicists
○ But don’t confuse “new to physics” with “new technology”

● Bottom line: this should be easy as long as we keep it simple

20

The boring spectrum

Standardized Stable Developing Bleeding edge

ONNX ROOT files TMVA RNtuple

Parquet EDMs Tensorflow, Keras Data Lakes

HDF5 CVMFS PyTorch, libtorch

JSON uproot

21

ATLAS inference notes
● lwtnn: stable, probably won’t change much in the near future

○ This is a good thing: it will go into run 3 trigger (tau, b-jet) and (hopefully) tracking

● Onnx runtime: merged to AtlasExternals
○ It’s 11 MB or so: any reason not to merge this?
○ Supports many more models than lwtnn

● MVAUtils: BDT support in reconstruction
○ Should probably be a stand alone library

■ TMVA dependency recently removed, could we remove ROOT?
○ Support for XGBoost, LightGBM, TMVA

● Overall: we don’t need full training libraries in reconstruction
○ Software team is small, support isn’t worth our time

22

https://github.com/lwtnn/lwtnn
https://gitlab.cern.ch/atlas/atlasexternals/merge_requests/583
https://gitlab.cern.ch/atlas/athena/tree/21.2/Reconstruction/MVAUtils

Training Side
● Strategy is the same as ever

○ No “hep” code
○ Use docker containers

● Build system:

pip install -r requirements.txt

● Lots of work scaling up
○ Cern has a GPU batch now!
○ Adding more grid sites

● Everything is python
○ The grad students love python

23

Also: we still need containers
● Small scale testing: use your laptop or local cluster
● Medium scale: lots of options, see Doug’s talk (also CERN batch)
● Large scale: submit to the grid

○ See instructions and tutorial

24

https://indico.cern.ch/event/881125/contributions/3721578/
https://indico.cern.ch/event/844092/contributions/3636415/
https://gitlab.cern.ch/aml/tutorials/dl1-hyperparameter-optimisation

Are we limited? Not so much (anymore)
● Our NNs are pretty simple

○ We built a pretty good detector
■ Complexity increase not certain

○ FTAG RNN (21 MB file): 666,462 pars
○ Many industry nets are O(10M)

● Our jobs aren’t too complicated
○ HP scans work “natively” on the grid

● We could use an “extension”
mechanism for long jobs

● Other ideas (active learning) could
come later

Hyperparameter
scan

Train Train Train Train

Train
More

Train
More

Active learning

25

https://atlas-groupdata.web.cern.ch/atlas-groupdata/BTagging/201903/rnnip/antikt4empflow/network.json

Crazier Ideas
26

Python: fun for the whole analysis!
● Write a for loop over PHYSLITE

○ Apply systematic, dump dataset

● Move everything into python
○ ML: anything you want
○ Lots of data formats
○ Use pyhf / scipy for limits
○ end-to-end learning is “easy”

■ d(limit)/d(anything)

● Vectorized out of the box
● This assumes

○ I know what I’m doing physics-wise
○ I don’t want to write any tools

DAOD
Files

ROOT

Data
Pipeline

Stats ML

27

https://keras.io/
https://pytorch.org/
https://github.com/google/jax
https://github.com/scikit-hep/uproot
https://www.h5py.org/
https://github.com/scikit-hep/pyhf
https://www.scipy.org/

Can we use this for production?
● No (not yet)

○ no simple way to write a (D)AOD
○ Have to deal with awkward arrays

● Maybe it’s worth trying
○ We could solve the inference problem

■ Or at least push it upstream
○ We could vectorize on HPCs for “free”

● Need python bindings for our EDM
○ PyROOT doesn’t count
○ Bindings need to be batch-wise

DAOD

?

28

What would be nice
● Ambitious goal: read AOD easily

pip install atlas_edm

● Or as an intermediate step

yum install atlas_edm

● We already have AnalysisBase as a docker image
○ But it’s O(1 GB)
○ Also installs a lot (compiler, ROOT)

29

Roadmap: Less (C++) is more
● Figure out what the EDM needs to depend on

○ Maybe rip a few things out of ROOT, i.e. TLorentzVector
○ CLHEP / Eigen for particles / tracks
○ FastJet probably needed for jets

● Remove ROOT
○ Replace it with uproot (the C++ bindings)

● Then work on python bindings
● Having a “light” release would be nice for a few reasons

○ Weird HPC architecture
○ ML (obviously)

● Open data / education deserves its own mention

30

What about systematics?
● The current paradigm: take your data, leave the HEP ecosystem

○ Not a great way to use common code (or produce it)

● A lot of CP code is of the form
1. Get a jet
2. Look up variation by bin
3. Multiply jet by variation

● Basically pt *= scale_factor[np.digitize(pt, pt_bins)]
○ Again, vectorized out of the box, can hook in GPU

● Missing parts
○ Community: hardly anyone actually does this
○ Tools are slightly more complicated than this

● We could do most post-PHYSLITE analysis in python

31

How big are the ATLAS libraries?
Just the libxAOD .so files (excluding Dict files):

du -s /usr/AnalysisBase/21.2.108/InstallArea/x86_64-centos7-gcc8-opt/lib/libxAOD*.so | grep -v Dict.so | awk '{a+=$1} ; END {print a}'

18,288

Every .so file

du -s /usr/AnalysisBase/21.2.108/InstallArea/x86_64-centos7-gcc8-opt/lib/*.so |awk '{a+=$1} ; END {print a}'

113,164

32

How big is ROOT?
du -s
/usr/AnalysisBaseExternals/21.2.108/InstallArea/x86_64-centos7-gcc8-opt/lib/lib* |
egrep 'lib[A-Z]+[a-z]*' | awk '{a+=$1}; END {print a}'

247,304

33

